Quasi Variances for Model Coefficients
qvcalc.Rd
Computes a set of quasi variances (and corresponding quasi standard errors) for estimated model coefficients relating to the levels of a categorical (i.e., factor) explanatory variable. For details of the method see Firth (2000), Firth (2003) or Firth and de Menezes (2004). Quasi variances generalize and improve the accuracy of “floating absolute risk” (Easton et al., 1991). This device for economical model summary was first suggested by Ridout (1989).
Usage
qvcalc(object, ...)
# S3 method for default
qvcalc(
object,
factorname = NULL,
coef.indices = NULL,
labels = NULL,
dispersion = NULL,
estimates = NULL,
modelcall = NULL,
...
)
# S3 method for coxph
qvcalc(object, factorname = NULL, coef.indices = NULL, ...)
# S3 method for itempar
qvcalc(object, ...)
# S3 method for lm
qvcalc(object, factorname = NULL, coef.indices = NULL, dispersion = NULL, ...)
Arguments
- object
For
qvcalc.default
, this is the covariance (sub)matrix for the parameters of interest (including any that may have been constrained to zero). For the genericqvcalc
, theobject
can be any object for which the relevant S3 method has been defined. These currently include many types of regression model (viaqvcalc.lm
), including objects of classescoxph
andsurvreg
; and also objects of classitempar
.- ...
other arguments to pass to
qv.default
- factorname
Either
NULL
, or a character vector of length 1- coef.indices
Either
NULL
, or a numeric vector of length at least 3- labels
An optional vector of row names for the
qvframe
component of the result (redundant ifobject
is a model)- dispersion
an optional scalar multiplier for the covariance matrix, to cope with overdispersion for example
- estimates
an optional vector of estimated coefficients (redundant if
object
is a model, for example)- modelcall
optional, the call expression for the model of interest (redundant if
object
is a model with its owncall
component)
Value
A list of class qv
, with components
- covmat
the full variance-covariance matrix for the estimated coefficients corresponding to the factor of interest
- qvframe
a data frame with variables
estimate
,SE
,quasiSE
andquasiVar
, the last two being a quasi standard error and quasi-variance for each level of the factor of interest- relerrs
relative errors for approximating the standard errors of all simple contrasts
- factorname
the factor name if given
- coef.indices
the coefficient indices if given
- modelcall
if
object
is a model,object$call
; otherwiseNULL
Details
The qvcalc.default
method is the computational backend for all other,
class-specific methods.
In qvcalc.default
, none of the arguments other than object
is
used in computing the result. The remaining arguments are simply passed
through to the result object as components to help with record-keeping etc.
In qvcalc.lm
, at least one of factorname
or
coef.indices
must be non-NULL
. The value of
coef.indices
, if non-NULL
, determines which rows and columns
of the model's variance-covariance matrix to use. If coef.indices
contains a zero, then an extra row and column are included at the indicated
position, to represent the zero variances and covariances associated with a
reference level. If coef.indices
is NULL
, then
factorname
should be the name of a factor effect in the model, and is
used in order to extract the necessary variance-covariance estimates.
For qvcalc.itempar
, the "itempar"
object must have the full
variance-covariance matrix in its "vcov"
attribute, and must have its
"alias"
attribute be TRUE
. These attributes result from use
of the default arguments vcov = TRUE, alias = TRUE
when the
itempar
function is called.
Ordinarily the quasi variances are positive and so their square roots (the quasi standard errors) exist and can be used in plots, etc.
Occasionally one (and only one) of the quasi variances is negative, and so
the corresponding quasi standard error does not exist (it appears as
NaN
). This is fairly rare in applications, and when it occurs it is
because the factor of interest is strongly correlated with one or more other
predictors in the model. It is not an indication that quasi variances are
inaccurate. An example is shown below using data from the car
package: the quasi variance approximation is exact (since type
has
only 3 levels), and there is a negative quasi variance. The quasi variances
remain perfectly valid (they can be used to obtain inference on any
contrast), but it makes no sense to plot `comparison intervals' in the usual
way since one of the quasi standard errors is not a real number.
References
Easton, D. F, Peto, J. and Babiker, A. G. A. G. (1991) Floating absolute risk: an alternative to relative risk in survival and case-control analysis avoiding an arbitrary reference group. Statistics in Medicine 10, 1025--1035.
Firth, D. (2000) Quasi-variances in Xlisp-Stat and on the web. Journal of Statistical Software 5.4, 1--13. c("\Sexpr[results=rd]tools:::Rd_expr_doi(\"#1\")", "10.18637/jss.v005.i04")doi:10.18637/jss.v005.i04
Firth, D. (2003) Overcoming the reference category problem in the presentation of statistical models. Sociological Methodology 33, 1--18. c("\Sexpr[results=rd]tools:::Rd_expr_doi(\"#1\")", "10.1111/j.0081-1750.2003.t01-1-00125.x")doi:10.1111/j.0081-1750.2003.t01-1-00125.x
Firth, D. and de Mezezes, R. X. (2004) Quasi-variances. Biometrika 91, 65--80. c("\Sexpr[results=rd]tools:::Rd_expr_doi(\"#1\")", "10.1093/biomet/91.1.65")doi:10.1093/biomet/91.1.65
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.
Menezes, R. X. de (1999) More useful standard errors for group and factor effects in generalized linear models. D.Phil. Thesis, Department of Statistics, University of Oxford.
Ridout, M.S. (1989). Summarizing the results of fitting generalized linear models to data from designed experiments. In: Statistical Modelling: Proceedings of GLIM89 and the 4th International Workshop on Statistical Modelling held in Trento, Italy, July 17--21, 1989 (A. Decarli et al., eds.), pp 262--269. New York: Springer.
Author
David Firth, d.firth@warwick.ac.uk
Examples
## Overdispersed Poisson loglinear model for ship damage data
## from McCullagh and Nelder (1989), Sec 6.3.2
if (require(MASS)) {
data(ships)
ships$year <- as.factor(ships$year)
ships$period <- as.factor(ships$period)
shipmodel <- glm(formula = incidents ~ type + year + period,
family = quasipoisson,
data = ships,
subset = (service > 0),
offset = log(service))
shiptype.qv <- qvcalc(shipmodel, "type")
## We can plot "comparison intervals" as follows:
## plot(shiptype.qv, xlab = "ship type")
## An equivalent result by using the coef.indices argument instead:
## shiptype.qv2 <- qvcalc(shipmodel, coef.indices = c(0, 2:5))
summary(shiptype.qv, digits = 4)
}
#> Model call: glm(formula = incidents ~ type + year + period, family = quasipoisson, data = ships, subset = (service > 0), offset = log(service))
#> Factor name: type
#> estimate SE quasiSE quasiVar
#> A 0.00000 0.0000 0.2010 0.04039
#> B -0.54334 0.2309 0.1127 0.01270
#> C -0.68740 0.4279 0.3753 0.14081
#> D -0.07596 0.3779 0.3239 0.10491
#> E 0.32558 0.3067 0.2322 0.05390
#> Worst relative errors in SEs of simple contrasts (%): -0.7 0.9
#> Worst relative errors over *all* contrasts (%): -2.1 1.6
## Example of a "coxph" model
if(require(survival)) {
data("veteran", package = "survival")
cancer_model <- coxph(Surv(time,status) ~ celltype, data = veteran)
celltype_qv <- qvcalc(cancer_model, "celltype")
summary(celltype_qv)
}
#> Loading required package: survival
#> Warning: data set ‘veteran’ not found
#> Model call: coxph(formula = Surv(time, status) ~ celltype, data = veteran)
#> Factor name: celltype
#> estimate SE quasiSE quasiVar
#> squamous 0.0000000 0.0000000 0.2023772 0.04095651
#> smallcell 1.0012532 0.2535074 0.1501828 0.02255487
#> adeno 1.1477130 0.2928805 0.2049427 0.04200152
#> large 0.2301455 0.2772930 0.1991861 0.03967510
#> Worst relative errors in SEs of simple contrasts (%): -1.7 2.4
#> Worst relative errors over *all* contrasts (%): -4.1 3.1
## Example of a "survreg" model
if(require(survival)) {
data("veteran", package = "survival")
cancer_model2 <- survreg(Surv(time,status) ~ celltype, data = veteran,
dist = "weibull")
celltype_qv2 <- qvcalc(cancer_model2, "celltype")
summary(celltype_qv2)
}
#> Warning: data set ‘veteran’ not found
#> Model call: survreg(formula = Surv(time, status) ~ celltype, data = veteran, dist = "weibull")
#> Factor name: celltype
#> estimate SE quasiSE quasiVar
#> squamous 0.0000000 0.0000000 0.1852658 0.03432341
#> smallcell -1.0831923 0.2405345 0.1537001 0.02362371
#> adeno -1.2162022 0.2743860 0.2022180 0.04089213
#> large -0.2627843 0.2745644 0.2024398 0.04098189
#> Worst relative errors in SEs of simple contrasts (%): -0.1 0.1
#> Worst relative errors over *all* contrasts (%): -0.2 0.1
## Based on an example from ?itempar
if(require(psychotools)) {
data("VerbalAggression", package = "psychotools")
raschmod <- raschmodel(VerbalAggression$resp2)
ip1 <- itempar(raschmod)
qv1 <- qvcalc(ip1)
summary(qv1) }
#> Loading required package: psychotools
#> estimate SE quasiSE quasiVar
#> S1WantCurse -1.38337955 0.1400077 0.1427898 0.02038892
#> S1DoCurse -1.38338563 0.1400078 0.1427899 0.02038896
#> S1WantScold -0.73070582 0.1306459 0.1328148 0.01763977
#> S1DoScold -0.55660577 0.1293742 0.1314680 0.01728384
#> S1WantShout -0.24905230 0.1283297 0.1303847 0.01700016
#> S1DoShout 0.69813569 0.1349252 0.1376080 0.01893598
#> S2WantCurse -1.90929270 0.1534737 0.1571194 0.02468649
#> S2DoCurse -1.03672005 0.1341048 0.1364969 0.01863141
#> S2WantScold -0.87273748 0.1320543 0.1343125 0.01803984
#> S2DoScold -0.11314599 0.1283548 0.1304310 0.01701224
#> S2WantShout -0.18103325 0.1283049 0.1303675 0.01699569
#> S2DoShout 1.31200512 0.1478902 0.1515414 0.02296478
#> S3WantCurse -0.69552829 0.1303489 0.1324995 0.01755613
#> S3DoCurse 0.04031978 0.1287445 0.1308728 0.01712769
#> S3WantScold 0.51356595 0.1324282 0.1349026 0.01819870
#> S3DoScold 1.33478884 0.1485182 0.1522130 0.02316879
#> S3WantShout 1.35770834 0.1491611 0.1529003 0.02337851
#> S3DoShout 2.87092053 0.2219058 0.2297809 0.05279924
#> S4WantCurse -1.24501930 0.1373885 0.1399977 0.01959934
#> S4DoCurse -0.87273748 0.1320543 0.1343125 0.01803984
#> S4WantScold 0.17794106 0.1294241 0.1316244 0.01732499
#> S4DoScold 0.21263744 0.1296453 0.1318676 0.01738906
#> S4WantShout 0.87109769 0.1378342 0.1407482 0.01981006
#> S4DoShout 1.84022315 0.1654484 0.1702428 0.02898261
#> Worst relative errors in SEs of simple contrasts (%): -0.7 1.3
#> Worst relative errors over *all* contrasts (%): -6.9 1.4
## Example of a negative quasi variance
## Requires the "car" package
if (FALSE) {
library(car)
data(Prestige)
attach(Prestige)
mymodel <- lm(prestige ~ type + education)
library(qvcalc)
type.qvs <- qvcalc(mymodel, "type")
## Warning message:
## In sqrt(qv) : NaNs produced
summary(type.qvs)
## Model call: lm(formula = prestige ~ type + education)
## Factor name: type
## estimate SE quasiSE quasiVar
## bc 0.000000 0.000000 2.874361 8.261952
## prof 6.142444 4.258961 3.142737 9.876793
## wc -5.458495 2.690667 NaN -1.022262
## Worst relative errors in SEs of simple contrasts (%): 0 0
## Worst relative errors over *all* contrasts (%): 0 0
plot(type.qvs)
## Error in plot.qv(type.qvs) : No comparison intervals available,
## since one of the quasi variances is negative. See ?qvcalc for more.
}